Inexpensive and renewable material that rapidly removes highly toxic water pollutant

Novel material removes pollutant PFOA to levels far below EPA’s health advisory limit

A highly toxic water pollutant, known as perfluorooctanoic acid (PFOA), last year caused a number of U.S. communities to close their drinking water supplies. Because of its historical use in Teflon production and other industrial processes as well as its environmental persistence, PFOA contamination is a pervasive problem worldwide.

A Northwestern University-led research team now reports an inexpensive and renewable material that rapidly removes PFOA from water. The novel treatment effectively eliminates the micropollutant to below 10 parts per trillion, far below Environmental Protection Agency and all state health advisory limits.

Will Dichtel

Will Dichtel (Department of Chemistry, Northwestern University)

“Our material fully extracts the pollutant out of water,” said William Dichtel, an expert in organic and polymer chemistry who led the study. “The polymer contains sites that bind PFOA strongly, which strips this pollutant out of water even when present at extremely low concentrations. The binding sites are joined together by linkers that further enhance the affinity for PFOA.”

Dichtel, the Robert L. Letsinger Professor of Chemistry at Northwestern’s Weinberg College of Arts and Sciences, believes the material can support water purification efforts to rid drinking water of PFOA and perhaps other per- and polyfluorinated alkyl substances (PFASs), such as perfluorooctanesulfonic acid (PFOS).

The PFOA material and Dichtel’s polymer technology are being developed for commercial use by CycloPure, Inc., a company co-founded by Dichtel.

The study, co-authored by Dichtel, Damian Helbling, assistant professor of civil and environmental engineering at Cornell University, and members of their research groups at Northwestern and Cornell, recently was published by the Journal of the American Chemical Society.

Continue reading this article from Northwestern News HERE.